

Feuille d'exercices N°5

Exercice 1 Linéariser $\cos^5(x)$.

Exercice 2 Pour tout $n \in \mathbb{N}^*$, calculer

(i)
$$\sum_{k=1}^{n} \frac{1}{k^2 + 3k + 2}$$

(ii)
$$\prod_{k=1}^{n} \left(1 - \frac{1}{k}\right)$$

(iii)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$$

(iv)
$$\sum_{k=1}^{n} k.k!$$

Exercice 3 Calculer les sommes suivantes :

(i)
$$\sum_{i=0}^{23} {23 \choose i} (-1)^i 2^{23-i}$$

(ii)
$$\sum_{i=1}^{n} (-1)^{i} \binom{n}{i}$$

(iii)
$$\sum_{i=1}^{n} (-1)^{i} \binom{n+1}{i}$$

Exercise 4 Soient $n \in \mathbb{N}$ et $a, b \in \mathbb{C}$ tels que $b \neq 0$.

Calculer $\sum_{k=0}^{n} a^k 2^{3k} b^{-k}$ et $\sum_{k=0}^{n^2} (1-a^2)^{2k+1}$.

Exercice 5 Soit $n \in \mathbb{N}$. On pose

$$P_n = \sum_{\substack{k=0\\k \ pair}}^{n} \binom{n}{k} \ et \ I_n = \sum_{\substack{k=0\\k \ impair}}^{n} \binom{n}{k}.$$

Calculer $P_n + I_n$ et $P_n - I_n$. En déduire P_n et I_n .

Exercise 6 Soit $n \in \mathbb{N}$. On pose

$$S_n = \sum_{k=0}^n \binom{2n+1}{k}.$$

- 1. À l'aide du changement d'indice $\ell = 2n+1-k$, déterminer une nouvelle expression de S_n .
- 2. En déduire la valeur de $2S_n$ puis celle de S_n .

Exercice 7 Soit $n \in \mathbb{N}^*$.

- 1. Calcular $S_n = \sum_{k=1}^n ((k+1)^5 k^5)$.
- 2. En déduire l'expression de $\sum_{k=1}^{n} k^4$.

Exercice 8 Soit $z \in \mathbb{C} \setminus \mathbb{U}$. Montrer que :

$$\left| \frac{1 - z^{n+1}}{1 - z} \right| \le \frac{1 - |z|^{n+1}}{1 - |z|}.$$

Exercise 9 Soient $n \in \mathbb{N}$ et $x \in \mathbb{R}$. On pose $c_n = \sum_{k=0}^n k \cos(kx)$ et $s_n = \sum_{k=0}^n k \sin(kx)$.

- (a) En utilisant l'identité $\sum_{l=1}^{k} 1 = k$, calculer la somme $\sum_{k=1}^{n} kz^{k}$, où $z \in \mathbb{C} \setminus \{1\}$.
- (b) Retrouver ce résultat en calculant $(z-1)\sum_{k=1}^{n}kz^{k}.$
- (c) Calculer c_n et s_n .

Exercice 10 Soient $(a,b) \in \mathbb{R}^2$ et $n \in \mathbb{N}$. Calculer

(i)
$$\sum_{k=0}^{n} \binom{n}{k} \cos\left(a + kb\right)$$

(ii)
$$\sum_{k=0}^{n} \binom{n}{k} \sin(a+kb).$$

Exercice 11 Soit $n \in \mathbb{N}^*$. Calculer les sommes suivantes: $\sum_{0 \le i,j \leqslant n} ij \sum_{0 \leqslant i,j \leqslant n} 2^{i+j} \sum_{0 \leqslant i,j \leqslant n} \max(i,j)$

$$\sum_{0 \leqslant i, j \leqslant n} \min(i, j) \sum_{0 \leqslant i \leqslant j \leqslant n} \frac{i}{j+1} \sum_{0 \leqslant i, j \leqslant n} |i - j|$$

$$\sum_{0 \leqslant i \leqslant j \leqslant n} 2^{j} {j \choose i} \sum_{0 \leqslant i, j \leqslant n} 2^{2i-j}$$

Exercice 12 Soit $n \in \mathbb{N}^*$. On pose : $S_n = \sum_{k=1}^n \frac{1}{k^2}$.

1. Vérifier que, pour tout entier $k \ge 2$, $\frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k}.$

LYCEE MOHAMMED VI D'EXCELLENCE

2. En déduire que, pour tout entier $n \ge 2$, $S_n \le 2 - \frac{1}{n}.$ Observer que cette inégalité est encore vrai pour n = 1.

Exercice 13 Montrer que pour tout $n \in \mathbb{N}^*$ et tout $p \in [1, n]$: $p \binom{n}{p} = n \binom{n-1}{p-1}$.

En déduire la valeur de $\sum_{k=0}^{n} k \binom{n}{k}$ et $\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k}$.

Exercice 14 1. Calculer, pour tout $n, p \in \mathbb{N}$, $\sum_{k=0}^{n} \binom{p+k}{k}.$

2. Calculer pour $n, p \in \mathbb{N}^*$, la somme $\sum_{i=0}^n \left(\prod_{j=1}^p (i+j)\right).$

Exercice 15 1. Soient $a, b \in \mathbb{R}_+$. Prouver que :

$$\arctan(a) - \arctan(b) = \arctan\left(\frac{a-b}{1+ab}\right).$$

2. Soit $n \in \mathbb{N}^*$. Calculer $S_n = \sum_{k=1}^n \arctan\left(\frac{1}{k^2 - k + 1}\right).$

3. En déduire la limite de la suite $(S_n)_{n\in\mathbb{N}^*}$.

Exercice 16 Le but de cet exercice est d'introduire une méthode pour calculer des sommes en utilisant les fonctions à une variable réelle.

Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$. Notons $S_n = \sum_{k=0}^n k \binom{n}{k} x^k$. Considérons $f(x) = (1+x)^n$, pour tout $x \in \mathbb{R}$.

- (a) Justifier la dérivabilité de f et calculer sa dérivée sur \mathbb{R} .
- $\begin{array}{c} \textit{(b) D'autre part, en utilisant la formule de bin\^ome} \\ \textit{de Newton, montrer que} \end{array}$

$$f'(x) = \sum_{k=1}^{n-1} k \binom{k}{n} x^{k-1}.$$

(c) En déduire la valeur de S_n .