

Feuille d'exercices N°4 Logique et Raisonnement

Exercice 1 Donner la valeur logique (vraie ou fausse) de chacune des assertions suivante en justifiant votre réponse :

1.
$$(1 > 0)$$
 et (1 est pair) .

3.
$$(0 \times 1 = 0) \Longrightarrow (0 = 1)$$
.

2.
$$\left(\frac{1}{2} \in \mathbb{N}\right)$$
 ou $(1+0=1)$.

4.
$$(-1 = 1) \iff (0 > 0)$$
.

Exercice 2 Soit f une fonction de \mathbb{R} dans \mathbb{R} . Quelle est la négation des assertions suivantes ?

(a)
$$\exists M \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) \leq M$$
.

(d)
$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y \leqslant f(x) \leqslant 2x + y$$
.

(b)
$$\forall x \in \mathbb{R}, \ f(x) \ge 1 \ ou \ f(x) \le -1.$$

(e)
$$\forall x \in \mathbb{R}, (\exists y \in \mathbb{R}, f(x) \geqslant y) \Longrightarrow x \leqslant 0.$$

(c)
$$\forall x \in \mathbb{R}, f(x) \ge 0 \Longrightarrow x \ge 0.$$

$$(f) \ \forall \varepsilon > 0, \ \exists \alpha > 0, \ \forall x \in \mathbb{R}, \ |x| \leqslant \alpha \Longrightarrow |f(x)| \leqslant \varepsilon$$

Exercice 3 Écrire avec des symboles mathématiques les assertions suivantes.

- 1. Il existe un nombre complexe de module un.
- 2. On peut trouver un entier naturel plus petit que tous les nombre réel.
- 3. Pour qu'un nombre réel soit supérieur à un il faut qu'il soit positif.
- 4. Pour qu'un nombre complexe soit réel, il suffit que son argument soit congrus à zéro modulo 2π.
- 5. Pour qu'un entier naturel soit pair, il faut et il suffit que son carré soit pair.
- 6. Il existe un rationnel compris entre $\sqrt{3}$ et $\sqrt{5}$.
- 7. Si la somme de deux entiers naturels est nulle, alors ces deux entiers naturels sont nuls.
- 8. Certains réels sont supérieurs à leur carré.
- 9. Le nombre 3 n'est le sinus d'aucun nombre réel.

Exercice 4 Soit f une fonction réelle définie sur \mathbb{R} . Écrire au moyen de quantificateurs les propositions suivantes :

- 1. f est croissante.
- 4. f prend au moins une fois la valeur 1.
- 6. f est bornée.

2. f s'annule.

7. f est paire.

- 3. f est périodique.
- 5. f est majorée.

8. f est nulle.

Exercice 5 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par $u_0=4$ et pour tout $n\in\mathbb{N}$: $u_{n+1}=\sqrt{3u_n+4}$. Montrer par récurrence que pour tout $n\in\mathbb{N}$: $0\leqslant u_n\leqslant 4$.

- 2. Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par $u_0=2$, $u_1=5$ et pour $n\in\mathbb{N}$, $u_{n+2}=5u_{n+1}-6u_n$. Montrer par récurrence que pour tout $n\in\mathbb{N}$: $u_n=2^n+3^n$.
- 3. Montrer par récurrence que pour tout $n \in \mathbb{N}^*$, $1+2+3+\cdots+n=\frac{n(n+1)}{2}$.

- 4. Montrer par récurrence que pour tout $n \in \mathbb{N}^*$, $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$
- 5. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=0$ et pour tout $n\in\mathbb{N}, u_{n+1}=5u_n+2$. Montrer par récurrence que pour tout $n \in \mathbb{N}$, $u_n = \frac{5^n - 1}{2}$.

Exercice 6 Soit P une assertion dépendante d'un paramètre réel.

- 1. On suppose que : $(\forall x \in \mathbb{R}^+, \mathcal{P}(x))$ et $(\forall x \in \mathbb{R}^{-*}, non(\mathcal{P}(x)))$. Que peut-on dire de la véracité des assertions suivantes ?
 - (a) $\mathcal{P}(4)$.

- (d) $\forall x \in \mathbb{R}, \ \mathcal{P}(x^2)$.
- $(g) \ \forall x \in [-3, +\infty[, \ \mathcal{P}(x)].$

(b) $\mathcal{P}(-1)$.

- (e) $\forall x \in \mathbb{R}^-, \mathcal{P}(-x)$.
- (c) $\forall \lambda \in \mathbb{R}^+, \mathcal{P}(\lambda)$.
- (f) $\forall x \in [1, +\infty[, \mathcal{P}(x).$ (h) $\exists x \in \mathbb{R}^+, \mathcal{P}(x).$
- 2. On suppose que : $\exists x \in \mathbb{R}^+$, $\mathcal{P}(x)$. Que peut-on dire de la véracité des assertions suivantes ?
 - (a) $\mathcal{P}(3)$.

- (c) $\exists x \in [1, +\infty[, \mathcal{P}(x).$ (e) $\exists x \in \mathbb{R}^+, \mathcal{P}(\sqrt{x}).$ (d) $\exists x \in \mathbb{R}, \mathcal{P}(x^2).$ (f) $\forall x \in \mathbb{R}^+, \mathcal{P}(x)$

- (b) $\exists x \in \mathbb{R}, \ \mathcal{P}(x)$.

1. Montrer que : $\forall x \in \mathbb{R}, |x| < 1 \Longrightarrow |x-2| \geqslant 1$.

2. Montrer que l'assertion suivante est fausse : $\forall n \in \mathbb{N}, 2^n \neq n^2$.

Exercice 8 Démontrer l'assertion suivante proprement :

$$\forall x \in \mathbb{R}, (x = 0 \iff \forall y \in \mathbb{R}, xy = 0).$$

Exercice 9 Montrer que pour tout $n \in \mathbb{N}$, si n^2 est pair, alors n est pair.

Exercice 10 On considère l'assertion

$$(\mathcal{P}): \forall (a,b) \in \mathbb{R}^2, (\forall \varepsilon > 0, a \leqslant b + \varepsilon) \Longrightarrow a \leqslant b.$$

Écrire sa négation et démontrer (\mathcal{P}) .

Exercice 11 Démonter l'implication suivante :

$$\forall (a,b) \in \mathbb{R}^2, (a \neq -2 \ et \ b \neq -2) \Longrightarrow ab + 2a + 2b \neq -4.$$

Exercice 12 Soit $(F_n)_{n\in\mathbb{N}}$ la suite de Fibonacci, définie par :

$$F_0 = F_1 = 1$$
 et $\forall n \in \mathbb{N}, F_{n+2} = F_{n+1} + F_n$.

Montrer que: $\forall n > 1, F_n < \left(\frac{7}{4}\right)^n$.

Exercice 13 Soit $f: \mathbb{N} \longrightarrow \mathbb{R}$ telle que:

$$f(n+m) = f(n) + f(m)$$
, pour tous $m, n \in \mathbb{N}$.

Montrer que, pour tout $n \in \mathbb{N}$, f(n) = nf(1).

Exercice 14 Montrer qu'il existe un $r \in \mathbb{R} - \mathbb{Q}$ tel que $(\sqrt{2})^r \in \mathbb{Q}$. (INdication: Penser à un raisonnement par disjonction des cas)