Feuille d'exercices N°03 Fonctions usuelles

Exercice 1 Calculer:

1.
$$arcos(cos(25\pi))$$

4.
$$\arcsin\left(\sin\left(\frac{34\pi}{3}\right)\right)$$

2.
$$\arcsin\left(\sin\left(\frac{39\pi}{2}\right)\right)$$

3.
$$\arcsin\left(\cos\left(\frac{35\pi}{4}\right)\right)$$
 5. $\arctan\left(\tan\frac{3\pi}{4}\right)$

5.
$$\arctan\left(\tan\frac{3\pi}{4}\right)$$

Exercise 2 Soit $A = \arctan(2) + \arctan(3)$.

- 1. Montrer que $A \in \left[\frac{\pi}{2}, \pi\right]$.
- 2. Calculer tan(A).
- 3. En déduire que $A = \frac{3\pi}{4}$.

Exercice 3 1. Montrer que :

$$\forall x \in [-1, 1], \cos\left(\frac{\pi}{2} - \arcsin(x)\right) = \cos(\arccos(x)).$$

- 2. En déduire : $\forall x \in [-1,1], \arccos(x) + \arcsin(x) = \frac{\pi}{2}$
- 3. Retrouver le résultat précédent en étudiant la dérivée de $la\ fonction\ f: x \mapsto \arccos(x) + \arcsin(x).$
- 4. Résoudre dans \mathbb{R} l'équation suivante, d'inconnu $x \in \mathbb{R}$:

$$\arcsin\left(\frac{1}{1+x^2}\right) + \arccos\left(\frac{3}{5}\right) = \frac{\pi}{2}.$$

1. Montrer que pour tout $x \in [-1, 1]$: Exercice 4

$$\sin(\arccos(x)) = \cos(\arcsin(x)) = \sqrt{1 - x^2}.$$

- 2. En effectuant des encadrements de $\arcsin\left(\frac{1}{3}\right)$ $\arccos\left(\frac{1}{4}\right)$, montrer que $\arcsin\left(\frac{1}{3}\right) + \arccos\left(\frac{1}{4}\right) \in [0, \pi].$
- 3. En utilisant les questions précédentes, résoudre l'équation : $\arcsin\left(\frac{1}{3}\right) + \arccos\left(\frac{1}{4}\right)$.

Exercice 5 1. Montrer que : $\forall x \in \mathbb{R}_+^*$, $\arctan(x) +$ $\arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}.$

- 2. En déduire que : $\forall x \in \mathbb{R}_{-}^*$, $\arctan(x) + \arctan\left(\frac{1}{x}\right) =$
- 3. Étudier la nature la branche infinie de $f: x \mapsto x \arctan x$ au voisinage de $+\infty$.

Exercice 6 Prouver que pour tout $x \in \mathbb{R}$:

$$\arctan(x) + 2\arctan\left(\sqrt{1+x^2} - x\right) = \frac{\pi}{2}.$$

Exercice 7 On appelle l'argument principal d'un nombre complexe non nul z l'unique argument de z dans l'intervalle $]-\pi,\pi]$. Le but de cet exercice est de calculer l'argument principal d'un nombre complexe non nul en utilisant la fonction arctan. Soit $z = x + iy \in \mathbb{C}^*$ avec $x, y \in \mathbb{R}$, α l'argument principal de z et r = |z|.

- 1. Exprimer x et y en fonction de r et α .
- 2. Déterminer α si x=0. Dans la suite de cette question on suppose que $x \neq 0$.
- 3. Montrer que : $\tan(\alpha) = \frac{y}{\alpha}$.
- 4. Montrer que :

(a)
$$si \ x > 0$$
, $alors \ \alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[;$

(b)
$$si \ x < 0 \ et \ y \geqslant 0$$
, $alors \ \alpha \in \left[\frac{\pi}{2}, \pi\right]$;

$$(c) \ si \ x < 0 \ et \ y < 0, \ alors \ \alpha \in \left] -\pi, -\frac{\pi}{2} \right[.$$

5. En déduire que :

$$\alpha = \begin{cases} \arctan\left(\frac{y}{x}\right) & si \ x > 0 \\ \arctan\left(\frac{y}{x}\right) + \pi & si \ x < 0 \ et \ y > 0 \end{cases}$$

$$\arctan\left(\frac{y}{x}\right) - \pi \quad si \ x < 0 \ et \ y < 0$$

Exercice 8 Exprimer cosh(x + y) et sinh(x + y) en fonction $de \cosh(x), \cosh(y), \sinh(x), \sinh(y).$

Exercice 9 Simplifier les expressions suivantes (il ne doit plus figurer de fonctions trigonométriques directes et réciproques):

$$f(x) = \cos(\arctan x)$$
 et $g(x) = \sin(\arctan x)$.

Exercice 10 Déterminer les domaines de définition des fonctions $f: x \mapsto \cos(\arccos(x))et$ $q: x \mapsto \arccos(\cos(x)).$

Exercice 11 On pose:

$$f(x) = \arctan\left(\sqrt{\frac{1-x}{1+x}}\right)$$

1. Déterminer le domaine de définition de f.

- 2. Montrer que $\varphi: t \mapsto \tan(t)$ est une bijection de $\left[0, \frac{\pi}{2}\right[$ sur un intervalle à déterminer.
- 3. Pour cette question et les deux suivantes, on fixe un réel $x \in]-1,1]$. Justifier qu'il existe un unique $\theta \in \left[0,\frac{\pi}{2}\right[$ tel que $\tan(\theta) = \sqrt{\frac{1-x}{1+x}}$.
- 4. Montrer que $x = \cos(2\theta)$.
- 5. Donner une expression simplifiée de f(x).
- 6. Déterminer l'ensemble de dérivabilité de f et calculer f'.
- 7. Retrouver alors l'expression simplifiée de f.

Exercice 12 Formule de Méchin

- $1.\ \, Montrer\ que: \ \, 4\arctan\left(\frac{1}{5}\right)-\arctan\left(\frac{1}{239}\right)\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[.$
- $2. \ \ Calculer \tan \left(2\arctan \left(\frac{1}{5}\right) \right), \ puis \tan \left(4\arctan \left(\frac{1}{5}\right) \right).$
- 3. En déduire l'égalité suivante :

$$4\arctan\left(\frac{1}{5}\right)-\arctan\left(\frac{1}{239}\right)=\frac{\pi}{4}.$$

Exercice 13 Soit $f: x \longmapsto \arccos(\cos(x)) - \arccos(\cos(2x))$.

- $1.\ D\'eterminer\ le\ domaine\ de\ d\'efinition\ de\ f.$
- 2. Déterminer le domaine d'étude de f.
- 3. Simplifier f(x) pour tout $x \in \left[0, \frac{\pi}{2}\right]$.
- 4. Simplifier f(x) pour tout $x \in \left[\frac{\pi}{2}, \pi\right]$.
- 5. Tracer le graphe de f.

Exercice 14 1. Montrer que : $\forall x \in \mathbb{R}$, $\arcsin x = \ln \left(x + \sqrt{x^2 + 1}\right)$.

2. Montrer que : $\forall x \ge 1$, $\operatorname{arccosh} x = \ln\left(x + \sqrt{x^2 - 1}\right)$.

3. Montrer que : $\forall x \in]-1,1[$, $\operatorname{arctanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$.

Exercice 15 On pose $f(x) = \arctan(\sinh x) + \arccos(\tanh x)$.

- 1. Donner le domaine de définition et le domaine de dérivabilité de f.
- 2. Montrer que f' est nulle sur son domaine de dérivabilité.
- 3. Montrer que $\arctan\left(\frac{5}{12}\right) + \arccos\left(\frac{5}{13}\right) = \frac{\pi}{2}$.

Exercice 16 Résoudre les équations suivantes:

$$\arccos x = 2\arccos\frac{3}{4}$$

$$\arctan 2x + \arctan x = \frac{\pi}{4}$$

$$\arcsin x = \arcsin \frac{2}{5} + \arcsin \frac{3}{5}$$

Exercice 17 On cherche à résoudre sur $\mathbb R$ l'équation suivante

$$\arctan(x-3) + \arctan(x) + \arctan(x+3) = \frac{5\pi}{4}.$$

- 1. Monter que : $\arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8} = \frac{\pi}{4}$.
- 2. En déduire que x = 5 est solution.
- 3. Étudier la monotonie de la fonction $f: x \mapsto \arctan(x 3) + \arctan(x) + \arctan(x + 3)$. Conclure.

Exercice 18 Soient a et b deux nombres réels positifs.

1. Prouver qu'il existe un unique $c \in \mathbb{R}$ tel que

$$\arctan(a) - \arctan(b) = \arctan(c).$$

2. Exprimer c en fonction de a et b.