

## Feuille d'exercices N°1

Exercice 1 Écrire sous forme algébrique les nombres complexes suivants :

$$z_1 = \frac{2 - \sqrt{3}i}{\sqrt{3} - 2i}, \ z_2 = \frac{(2+i)(3+2i)}{2-i} \ et \ z_3 = \frac{3+4i}{(2+3i)(4+i)}.$$

Exercice 2 Mettre sous forme trigonométrique les complexes suivants :

$$z_1 = 1 + i, z_2 = \frac{\sqrt{3} + i}{1 - i}$$
 et  $z_3 = \frac{\sqrt{6} + i\sqrt{2}}{2 + 2i}$ 

**Exercice 3** Calculer  $z^n$  pour  $z = \frac{1 + i\sqrt{3}}{1 + i}$  et  $n \in \mathbb{N}$ .

Exercise 4 Soient  $\theta \in ]0, 2\pi[$  et  $z = \frac{1 + e^{i\theta}}{1 - e^{-i\theta}}.$ 

Calculer le module et un argument de z.

Exercice 5 Soit  $\theta \in \mathbb{R}$ . Transformer  $1 + e^{i\theta} + e^{i2\theta}$  sous la forme  $re^{i\alpha}$  où r et  $\alpha$  sont des réels.

**Exercice 6** On pose  $\omega = \sqrt{3} + i$ . Déterminer les  $n \in \mathbb{Z}$  tel que  $\omega^n \in \mathbb{R}$ .

**Exercice 7** Soit  $z \in \mathbb{U} \setminus \{1\}$ . Montrer que :  $i\frac{1+z}{1-z} \in \mathbb{R}$ .

Exercice 8 Soit u, v des nombres complexes non réels tels que |u|=|v|=1 et  $uv\neq 1$ . Montrer que  $\frac{u+v}{1+uv}$  est réel.

**Exercice 9** Soit  $z \in \mathbb{C} \setminus \{1\}$ .

- 1. Montrer que  $\frac{z+1}{z-1}$  est imaginaire pur ssi  $z \in \mathbb{U}$ .
- 2. Montrer que  $\frac{z+1}{z-1} \in \mathbb{U}$  ssi z est imaginaire pur.

Exercice 10 Déterminer les racines carrées des nombres complexes suivants :

$$z_1 = -3 + 4i, z_2 = -5 + 12i$$
 et  $z_3 = -24 - 10i$ .

Exercice 11 1. Calculer les racines  $3^{\grave{e}mes}$  de -8.

2. Calculer les racines 5<sup>èmes</sup> de i.

Exercice 12 Déterminer les racines  $4^{\text{èmes}}$  de -7 - 24i.

**Exercice 13** Monter que, pour tout  $(a,b) \in \mathbb{C}^2$ :

$$\operatorname{Re}(ab) \leqslant \frac{|a|^2 + |b|^2}{2}.$$

Exercice 14 Soit  $n \in \mathbb{N}$ .

1. Soit  $z \in \mathbb{C}$ . Simplifier l'expression :

$$(1-z)(1+z+z^2+\cdots+z^n).$$



2. Soit  $z \in \mathbb{C} \setminus \mathbb{U}$ . Montrer que :

$$\left| \frac{1 - z^{n+1}}{1 - z} \right| \le \frac{1 - |z|^{n+1}}{1 - |z|}.$$

**Exercice 15** Soient  $a, b \in \mathbb{C}$ .

- 1. Prouver que :  $2|b| \le |a+b| + |a-b|$ .
- 2. En déduire que :  $|a| + |b| \le |a+b| + |a-b|$ .

Exercice 16 1. Déterminer les racines carrées de 18i.

2. Résoudre dans  $\mathbb{C}$ :  $z^2 + z - iz - 5i = 0$ 

Exercice 17 Résoudre les équations suivantes :

(a) 
$$z^2 - iz + 5 - 5i = 0$$
.

(b) 
$$z^2 - iz + 1 - 3i = 0$$
.

Exercice 18 Soit P le polynôme défini dans  $\mathbb{C}$  par :

$$P(z) = z^3 - z^2 + (5+7i)z + 10 - 2i.$$

- 1. Montrer que P possède une racine imaginaire pure. On le note ai, avec  $a \in \mathbb{R}$ .
- 2. En déduire une factorisation de P de la forme P(z) = (z ai)Q(z) où Q est un polynôme de degré 2 à coefficients complexes.
- 3. Résoudre alors P(z) = 0.

**Exercice 19** 1. Résoudre dans  $\mathbb{C}: z^2 - (5 - 14i)z - 2(12 + 5i) = 0$ .

2. Résoudre dans  $\mathbb{C}$ :  $z^4 - (5 - 14i)z^2 - 2(12 + 5i) = 0$ .

**Exercice 20** 1. Calculer les racines  $4^{\grave{e}mes}$  de -i.

2. Résoudre dans  $\mathbb{C}$  l'équation :  $(z+i)^4 + iz^4 = 0$ .

Exercice 21 1. Donner les racines 4<sup>èmes</sup> de l'unité.

2. Résoudre dans  $\mathbb{C}$  l'équation :  $z^3 + z^2 + z + 1 = 0$ .

**Exercice 22** Résoudre dans  $\mathbb{C}$  les équations suivantes :

(a) 
$$e^z = 1 + i\sqrt{3}$$

(b) 
$$e^z + e^{-z} = 1$$
.

Exercice 23 Résoudre dans  $\mathbb C$  les équations suivantes :

(a) 
$$2z + 3\bar{z} = 1$$
.

(b) 
$$z^2 = \bar{z}$$
.

**Exercice 24** 1. Déterminer les racines carrées de 1+i par la méthode algébrique et par la méthode trigonométrique. En déduire les valeurs de  $\cos\left(\frac{\pi}{8}\right)$  et  $\sin\left(\frac{\pi}{8}\right)$ .

2. Calculer les valeurs de  $\cos\left(\frac{\pi}{12}\right)$  et  $\sin\left(\frac{\pi}{12}\right)$ .

**Exercice 25** Linéariser les expressions suivantes, où  $x \in \mathbb{R}$ :



1. 
$$\cos^2(x)\sin(x)$$

3. 
$$\sin^4(x)\cos^2(x)$$

2. 
$$\sin^3(x)\cos^2(x)$$

4. 
$$\cos^3(x)\sin^2(x)$$

Exercice 26 Soient p, q des réels. Montrer que

(a) 
$$\cos(p)\cos(q) = \frac{1}{2}(\cos(p+q) + \cos(p-q)).$$

**(b)** 
$$\sin(p)\sin(q) = \frac{1}{2}(\cos(p-q) - \cos(p+q)).$$

(c) 
$$\cos(p)\sin(q) = \frac{1}{2}(\sin(p+q) + \sin(p-q)).$$

**Exercice 27** Déterminer les points d'affixe  $z \in \mathbb{C}$  tels que :

1. 
$$|z-1+i|=2$$
.

2. 
$$\arg(z) \equiv 0 [2\pi]$$
.

3. 
$$Re(z) + Im(z) = 1$$
.

4. 
$$|z-2-3i| = |z+1-i|$$
.

5. 1, z et z<sup>2</sup> soient les affixes de trois points alignés.

Exercice 28 1. Montrer que les points suivantes sont alignés :

$$A(2+3i), B(4-i)$$
 et  $C(8-9i)$ .

2. Montrer que les droites (AB) et (CD) sont perpendiculaires où :

$$A(1+5i), B(-1-i), C(4-i)$$
 et  $D(-5+2i)$ .

3. Montrer que le triangle ABC est rectengle et isocèle en A où :

$$A(2+3i), B(4+7i)$$
 et  $C(-2+5i)$ .

Exercice 29 Donner les applications qui représentent dans le plan complexe les transformations suivantes :

- 1. La translation de vecteur d'affixe -2 + i.
- 2. La symétrie de centre i .
- 3. La rotation d'angle  $\frac{\pi}{6}$  et de centre 1.
- 4. L'homothétie de rapport 3 et de centre 1 + 2i.
- 5. La similitude de rapport 2, d'angle  $\frac{\pi}{3}$  et de centre 1+i.

**Exercice 30** Soit  $(x, y, z) \in \mathbb{R}^3$  tel que :

$$e^{ix} + e^{iy} + e^{iz} = 0.$$

Montrer que

$$e^{2ix} + e^{2iy} + e^{2iz} = 0.$$

Exercice 31 Soient A, B, C, D quatre points du plan distincts deux à deux. On suppose de plus A, B, C non alignés et on introduit le cercle C de centre O circonscrit au triangle ABC.

On choisit un repère orthonormé du plan de centre O tel que C ait pour rayon 1. On note a, b, c, d les affixes respectifs de A, B, C, D.

respectifs de A, B, C, D.
On pose enfin 
$$Z = \frac{d-a}{c-a} \frac{c-b}{d-b}$$
.

LM6E 1TSI3 3



- 1. Dans cette question, on suppose que D appartient à C.
  - (a) Justifier que  $\bar{a}=\frac{1}{a},\ \bar{b}=\frac{1}{b},\ \bar{c}=\frac{1}{c},\ \bar{d}=\frac{1}{d}.$
  - (b) Montrer que Z est un réel.
  - (b) En déduire que  $(\overrightarrow{AC},\overrightarrow{AD}) \equiv (\overrightarrow{BC},\overrightarrow{BD}) [\pi].$
- 2. Réciproquement, on suppose que  $(\overrightarrow{AC}, \overrightarrow{AD}) \equiv (\overrightarrow{BC}, \overrightarrow{BD}) [\pi]$  et on veut montrer que D appartient à C.
  - (a) Que peut-on dire de Z?
  - (b) Exprimer d en fonction de a, b, c, Z.
  - (c) Calculer  $\bar{d}$  et en déduire que D appartient à C.

Exercice 32 Le plan  $\mathcal{P}$  est rapporté à un repère orthonormal direct  $(O, \vec{i}, \vec{j})$ .

On dit d'un triangle équilatéral ABC est direct si et seulement si  $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{3}[2\pi]$ .

- 1. On pose  $j = e^{i\frac{2\pi}{3}}$ .
  - (a) Montrer que :  $j^3 = 1$  et  $j^2 + j + 1 = 0$ .
  - **(b)** Vérifier que :  $j^2 + e^{i\frac{\pi}{3}} = 0$ .
- 2. Soient A, B et C trois points d'affixes respectifs a, b et c.
  - (a) Prouver que ABC est un triangle équilatéral direct si et seulement si :  $c-a=e^{i\frac{\pi}{3}}(b-a)$ .
  - (b) En déduire que ABC est un triangle équilatéral direct si et seulement  $si: a+jb+j^2c=0$ .
  - (c) Prouver que ABC est un triangle équilatéral indirect si et seulement si :  $a + jc + j^2b = 0$ .

Exercice 33 Soit  $\theta \in \mathbb{R}$  et  $n \in \mathbb{N}^*$ .

- 1. Calculer en fonction de  $\theta$  la somme  $\sum_{k=0}^{n} e^{ik\theta}$ .
- 2. En déduire les valeurs de  $\sum_{k=0}^{n} \cos(k\theta)$  et  $\sum_{k=0}^{n} \sin(k\theta)$ .