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Feuille d’exercices N°10
Géométrie Dans L’espace

-

Dans tous les exercices, sauf spécifications contraires, ’espace est muni du repére orthonormé direct (O, 4, j, k)
et les coordonnées des points sont données dans ce repére.

Exercice 1 On considere les vecteurs @(m,m,—1)
et (2 —m,1,m —1). Pour quelle(s) valeur(s) de m
les vecteurs U et U sont ils colinéaires ? orthogonaux
2

Exercice 2 On considére les trois wvecteurs
4(1,0,1), v(1,-2,—1) et wW(2,—1,1). Montrer que
U,V et W sont coplanaires.

vecteurs

Exercice 3 On considére les trois

i@(1,-2,-3), 7(1,1,1) et @(1,0,0).

1. Montrer que (@, ¥,) est une base de [’espace.

2. Calculer les coordonnées du vecteur t(—5,2,3)
dans la base (U, U, W).
. . — -2 7 — 1 e
Exercice 4 Soient i = —(i+k), v = —=(—i1+7+

1
| V2 V3
k) et © = —(—i —2j + k). Démontrer que (i, ¥,%)

est une base orthonormée . Cette base est-elle directe
?

Exercice 5 Cualculer le volume du parallélépipéde
défini par @ (—1,1,1),7(1,2,—-1) et W = (2,0,3).

Exercice 6 Soient P le plan d’équation cartési-
enne x4+ 2y —32+4 = 0 et A0,1,2),
B(-1,0,1),C(1,1,1) trois points de l’espace.

1. Montrer que A, B et C ne sont pas alignés et
déterminer une équation cartésienne du plan
P’ passant par ces points.

2. Montrer que P et P’ sont sécants selon une
droite D.

Exercice 7 Soit la droite D dont un systéme

r =y+1
d’équations cartésiennes est :
z =y

Déterminer une équation cartésienne du plan P or-
thogonal ¢ D et passant par A(1,1,1).

Exercice 8 On considére les deux droites suivantes

r=2z+1
D : D .

rT=z+4+2

y=z-—1 y=3z—3

1. Les droites (D) et (D') sont elles paralléles ?

2. Montrer que les deux droites suivantes sont
coplanaires et former une équation cartésienne
de leur plan.

Exercice 9 On considére la droite D passant par le
point A = (1,-2,0) et dirigée par 4 = (1,1,—1).
Soit B = (0,1, —2) un point de l’espace.

1. Calculer la distance de B a la droite D.

2. Déterminer les coordonnées du point H, projeté
orthogonal de B sur D. Retrouver la distance

de B a la droite D.

Exercice 10 On considére les plans P et P’
d’équations respectives x —y + z+ 1 = 0 et 2x +
y—z—1=0.

1. Vérifier que ces deuzx plans ne sont pas paral-
leles.

2. Déterminer une paramétrisation de leur inter-
section D.

3. Donner une équation cartésienne du plan Q
passant par A = (1,1,0) et perpendiculaire auz
deuz plans P et P’.

Exercice 11 On consideére le plan P représenté
paramétriqguement par :

x = 24+A—p
P y = 3—A+2u ()\,,U)ERZ.
z = 142 +u
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1. Donner une équation cartésienne du plan P.

2. Déterminer la distance du point A(1,1,1) au
plan P.

3. Donner une équation cartésienne de la droite
passant par le point A et perpendiculaire au
plan P.

Exercice 12 On consideére la droite d’équation :

Il
o

r+y—z+1
20 —y+z—2 = 0

Déterminer la distance du point Q(1,2,1) a cette
droite.

Exercice 13 Soit D la droite passant par les points
A(1,-2,-1) et B(3,—5,-2).

1. Donner un systéme d’équations paramétriques
de D.

2. Soit D' la droite d’équations paramétriques

r = 2-—1t
y = 142t teR
z =t

Démontrer que les droite D et D' ne sont pas
coplanaires.

3. P est le plan d’équation 4x +y + 5z + 3 = 0.

a. Démontrer que P contient la droite D.

b. Démontrer que P coupe la droite D' en un
point C que vous déterminerez.

4. A est la droite passant par C' et dirigée par le
vecteur (1,1, —1).

a. Démontrer que A et D' sont coplanaires
et orthogonales.

b. Démontrer que A coupe perpendiculaire-
ment D en un point E dont vous déter-
minez les coordonnées.

Exercice 14 Soient A(5,—1,4) et B(2,0,1). Don-
ner une équation cartésienne de la sphére de diamétre
[AB].

Exercice 15 Soient Q(4,1,2) et A(—1,1,2).

1. Déterminer une équation de la sphére de centre
Q et passant par A puis donner une équation
du plan tangent en A G cette sphere.

2. Montrer que [’ensemble de

cartésienne

représentation

2?4yt —8r—2y—4z=4
z+y+2=0

est un cercle dont on précisera le rayon et le
centre.

Exercice 16 On considére les plans P et Q
d’équations respectives 3r—4y+1 = 0 et 2x—3y—+62—
1 =0. Déterminer l’ensemble des points équidistants

de P et Q.

Exercice 17 1. Montrer que x> +v* + 2> — 2z —
4y — 62 + 5 = 0 est l’équation d’une sphére S
dont on déterminera le centre et le rayon.

2. Etudier Uintersection de S avec le plan P

d’équation r +y + z — 1 = 0. On précisera les
éléments géométriques de cette intersection.

Exercice 18 On considére la sphére S d’équation :
224y 42 -2+ 4y +62—11=0
ainsi que le plan P d’équation :
3z —42+19=0.
1. Donner le centre ) et le rayon R de S.
2. Déterminer lintersection de P et de S.

3. Donner une représentation paramétrique de la
droite A perpendiculaire & P qui passe par €.

4. Trouwver les coordonnées des points M et N
de S respectivement le plus proche et le plus
€loigné de P en précisant les distances corre-
spondantes (ces points sont sur A).

Exercice 19 Montrer qu’il exviste une et une seule
spheére, dont on déterminera le rayon et le centre,
intersectant les plans x = 1 et z = —1 suivant les
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cercles d’équations cartésiennes :

=1

Cll
v —2y+22+624+2=0
z=-1

CQI

v —dr+y? —2y=0

Exercice 20 Soient A, B, C trois points deux a deux
distincts. En utilisant les propriétés vérifiées par le
produit vectoriel, montrer que, quelque soit le point

M :
MAANMB +MBAMC +MCAMA = AB A AC.

Exercice 21 Soient @, ¥ et w trois vecteurs de
l’espace. Montrer formule du double produit vec-
toriel :

U (TA W) = (4.9)7 — (d.9)d.
Indication : Choisissez une base dans laquelle les co-
ordonnées des vecteurs i, U et W ont le maximum des
Z€108.

—

Exercice 22 Soient quatre vecteurs d, b,
l’espace.

acide

1. Montrer 'identité de Jacobi :

2. Montrer que

B ~ |ae ad
@Ab).(Nd) =
b.e bd

3. Montrer que

(@A D) A (EAd) = det(a, b, d)é — det(a, b, &)d.

-

Exercice 23 On considére deur vecteurs (d,b) de
lespace. On veut résoudre I’équation vectorielle

F+aNT =0
1. Soit & une solution.
a. Vérifier que : d.2 = a.b.
b. En utilisant la formule du double produit
vectoriel, montrer que : A AT + (a.%)d —
|@||>% = a@Ab.

c. En déduire l'expression de .

2. Réciproquement, montrer que le vecteur T
trouvé dans la question précédente est bien une
solution de l’équation.

an (5/\ &) + bA EANT)+EN @A 5) -0 Exercice 24 Soient quatre vecteurs a, l_;, c, d de
l’espace.. Montrer que
Indication : on pourra utiliser la formule du B . B
double produit vectoriel de ’exercice précédent. (@.¢) x (b.8) + (@N3).(bAE) = (ab) x|
LM6E 1TSI1 3



