

Chapitre 5 : Logique et Raisonnement Partie II

1 Propositions logiques

1.1 Assertions

Définition 1

On appelle **assertion** toute phrase mathématique à laquelle on peut attribuer une et une seule **valeur de vérité**, à savoir **vrai** (V en abrégé) ou **faux** (F en abrégé).

Remarque 1 Parfois on note 1 (resp. 0) au lieu de V pour indiquer que l'assertion est vraie (resp. fausse).

Définition 2

Une assertion vraie est appelée **proposition**; on dit que qu'on a P, ou que P est vraie. Selon l'importance qu'on donne à la proposition, celle-ci pourra aussi porter le nom de : **théorème**, **corollaire**, **lemme**,..

Exemples 1 • (4 est un nombre positif) est une assertion vraie.

- (4 est un nombre négatif) est une assertion fausse.
- $(\sqrt{2})$ n'est pas une assertion car elle n'est même pas une phrase.
- Soit $x \in \mathbb{R}$. $(\sqrt{x} \ge 0)$ est une assertion seulement si $x \ge 0$; car si x < 0, \sqrt{x} n'existe pas et $(\sqrt{x} \ge 0)$ n'a donc pas de sens.
- Soit $x \in \mathbb{R}$. (x+1>0) est une assertion vraie si x>-1, et est une assertion fausse si $x \le -1$.

Remarque 2 Lorsque la valeur de vérité d'une assertion P dépend des valeurs prises par un paramètre x, on note souvent celle-ci P(x) pour le signaler.

Exercice 1 1. P(x) = x > 0 est une assertion dépendant d'un paramètre x réel.

- 2. P(2) est une assertion vraie.
- 3. P(-2) est une assertion fausse.

1.2 Assertions équivalentes

Définition 3

Soient P et Q deux assertions.

On dit que P est **équivalente** à Q, ou que P et Q sont **équivalentes**, si P et Q ont la même valeur de vérité. On présente ce cas par la donnée de l'assertion $P \iff Q$.

Exemples 2 • x étant un réel positif . $(x = x^2 + 1)$ est équivalente à $(x^2 - x + 1) = 0$.

• (4 > 0) n'est pas équivalente à (2 < 0).

Remarque 3 Table de vérité de l'équivalence

P	Q	$P \iff Q$
1	1	
1	0	
0	1	
0	0	

Remarque 4 Pour exprimer que $P \iff Q$ est vraie, on peut utiliser l'une des expressions suivantes :

- (1) $P \iff Q$.
- (2) P équivaut à Q.
- (3) P si et seulement si Q.
- (4) Pour que P il faut et il suffit qu'on ait Q.
- (5) P est une condition nécessaire et suffisante (CNS) pour qu'on ait Q.

1.3 Négation

Définition 4

On appelle **négation** d'une assertion P l'assertion, notée **non(P)** (ou par $\neg P$), définie comme étant vraie lorsque P est fausse et inversement.

On peut aussi dire que l'assertion non(P) est définie par la table de vérité :

Р	non(P)

Exercice 2 1. La négation de $x \ge 0$ est

2. La négation de x = y est

2 Connecteurs binaires usuels

Les connecteurs **binaires** opèrent eux sur deux assertions : ils permettent d'associer à deux assertions P et Q, de nouvelles assertions.

2.1 Conjonction et disjonction

Définition 5

Soient P et Q deux assertions.

- 1. On appelle **conjonction** de P et Q l'assertion notée \mathbf{P} et \mathbf{Q} définie comme étant vraie lorsque P et Q le sont toutes les deux.
- 2. On appelle **disjonction** de P et Q l'assertion notée **P ou Q** définie comme étant vraie lorsqu'au moins l'une des deux l'est).

On a donc:

Р	Q	P et Q	P ou Q
1	1		
1	0		
0	1		
0	0		

Exercice 3 0 < x < 1 est la conjonction de

Remarque 5 Si P ou Q est vraie et Q est fausse alors nécessairement P est vraie.

2.2 Implications

Définition 6

Soient P et Q deux assertions.

On définit l'assertion $\mathbf{P}\Longrightarrow\mathbf{Q}$, qu'on lit \mathbf{P} implique \mathbf{Q} , comme étant fausse dans le seul cas où \mathbf{P} est vraie et \mathbf{Q} est fausse. On a donc :

Р	Q	$P \Longrightarrow Q$
1	1	
1	0	
0	1	
0	0	

Remarque 6 1. Si P est fausse, alors $P \Longrightarrow Q$ est toujours vraie.

2. Si P est vrai, alors $P \Longrightarrow Q$ n'est vraie que lorsque Q est vraie.

3. Ainsi, pour montrer que $P \Longrightarrow Q$ est vraie il suffit de montrer que Q est vraie dans le cas où P est vraie, ce qui revient à supposer que P est vraie et de montrer sous cette hypothèse que Q est vraie.

- Rédaction -

Quand on veut montrer que $P \Longrightarrow Q$ est vraie, on procède souvent ainsi :

ou bien on procède par des implications successives :

$$P \Longrightarrow P_1 \Longrightarrow \cdots \Longrightarrow P_n \Longrightarrow Q$$

Remarque 7 L'implication $P \Longrightarrow Q$ peut s'exprimer par :

- 1. P implique Q.
- 2. P entraîne Q.
- 3. Si P, alors Q.
- 4. Q est conséquence de P.
- 5. Pour que P il faut que Q.

- 6. Q est une condition nécessaire (CN) pour P.
- 7. Pour que Q il suffit que P.
- 8. P est une condition suffisante (CS) pour Q.

Proposition 1

- 1. P \Longrightarrow Q et (non P ou Q) sont équivalentes.
- 2. $(P \Longleftrightarrow Q)$ et $(P \Longrightarrow Q$ et $Q \Longrightarrow P)$ sont équivalentes.
- 3. $(P \iff Q)$ et $(non(P) \iff non(Q))$ sont équivalentes.

Preuve. 1

	1 Touve: 1					
P	9 6)	$P \Longleftrightarrow Q$	$P \Longrightarrow Q$	$Q \Longrightarrow P$	$P \Longrightarrow Q \ et \ Q \Longrightarrow P$
1	1					
1	0)				
0	1	,				
0	0)				

P	Q	$P \Longleftrightarrow Q$	(non(P)	(non(Q)	$(non(P) \Longleftrightarrow non(Q))$
1	1				
1	0				
0	1				
0	0				

Remarque 8 Pour montrer que l'équivalence $P \Longleftrightarrow Q$ est vraie, on a au moins trois méthodes :

1. Raisonner de P à Q au moyen d'un raisonnement dont chaque étape est une équivalence :

$$P \Longleftrightarrow P_1 \Longleftrightarrow \cdots \Longleftrightarrow P_n \Longleftrightarrow Q$$

- 2. Montrer $P \Longrightarrow Q$, puis $Q \Longrightarrow P$.
- 3. Montrer que $P \Longrightarrow Q$, puis $non(P) \Longrightarrow non(Q)$

Proposition 2

- 1. $non(non(P)) \iff P$.
- 2. $non(P \text{ et } Q) \iff (non(P) \text{ ou } non(Q)).$
- 3. $non(P \text{ ou } Q) \iff (non(P) \text{ et } non(Q)).$
- 4. $non((P \Longrightarrow Q) \iff (P \text{ et } non(Q)).$

3 Quantificateurs

Soient E un ensemble et P(x) une assertion dépendante d'un élément $x \in E$.

3.1 Définitions

Définition 7

- \bullet Le symbole ' \forall ' est appelé **quantificateur universel**.
- On définit l'assertion $\forall x \in E$, P(x) comme étant vraie lorsque P(x) est vraie pour tout x dans E.

Cette assertion se lit : Pour tout x dans E on a P(x) , ou Quel que soit x dans E, on a P(x).

Exercice 4 1. $\forall x \in \mathbb{R}, x^2 \geqslant 0$

- 2. $\forall x \in [-1, 1], x^2 \leq 1$
- 3. $\forall x \in \mathbb{R}, x^2 \leqslant 1$

Remarque 9 Écrire $\forall x, P(x)$ est insuffisant!

Définition 8

- On définit le quantificateur existentiel '∃'.
- On définit l'assertion $\exists x \in E, P(x)$ comme étant vraie lorsque P(x) est vraie pour au moins un x dans E.

Cette assertion se lit : Il existe (au moins un) x dans E tel que P(x) .

Exercice 5 1. $\exists x \in \mathbb{R}, x^2 = 1$

2.
$$\exists x \in [2,3], x^2 = 1$$

Remarque 10 1. Quand on veut montrer: $\forall x \in E, P(x)$, on commence généralement la rédaction par

2. La lettre affectée par un quantificateur est muette ; elle peut être remplacée par n'importe quelle lettre :

$$(\forall x \in E, \, \mathbf{P}(x)) \Longleftrightarrow (\forall y \in E, \, \mathbf{P}(y))$$

$$(\exists x \in E, P(x)) \iff (\exists y \in E, P(y))$$

Exercice 6 Montrer que : $\forall x \in \mathbb{R}, \ \frac{x}{x^2 + 1} \leqslant \frac{1}{2}$.

Exercice 7 Montrer que $\forall x \in \mathbb{R}, \exists z \in \mathbb{R}, z > x$.

3.2 Négation

Proposition 3

- 1. $\operatorname{non}(\forall x \in E, P(x)) \iff (\exists x \in E, \operatorname{non}(P(x)))$
- 2. $\operatorname{non}(\exists x \in E, P(x)) \iff (\forall x \in E, \operatorname{non}(P(x)))$
- 3. non $(P \Longrightarrow Q) \iff (P \text{ et non } Q)$.

Exercice 8 La négation de l'assertion

$$\forall \varepsilon \in \mathbb{R}_{+}^{*}, \, \exists \alpha \in \mathbb{R}_{+}^{*}, \forall x \in \mathbb{R}, \left(|x| < \alpha \Longrightarrow \left| \frac{x}{1 + x^{2}} \right| < \varepsilon \right)$$

est

3.3 Permutation des quantificateurs

On peut toujours permuter les quantificateurs universels \forall entre eux, et les quantificateurs existentiels \forall entre eux.

Exercice 9 1.
$$(\forall x \in \mathbb{R}_+, \ \forall y \in \mathbb{R}_-, \ x \geqslant y) \iff (\ \forall y \in \mathbb{R}_-, \ \forall x \in \mathbb{R}_+, \ x \geqslant y).$$

2.
$$(\exists x \in \mathbb{R}_+, \exists y \in \mathbb{R}_-, x \geqslant y) \iff (\exists y \in \mathbb{R}_-, \exists x \in \mathbb{R}_+, x \geqslant y).$$

Remarque 11 La permutation d'un \forall et d'un \exists n'est pas aussi facile. Par exemple l'assertion $\forall x \in \mathbb{R}, \exists z \in \mathbb{R}, z > x$ est vraie, mais l'assertion $\exists z \in \mathbb{R}, \forall x \in \mathbb{R}, z > x$ est fausse.

4 Raisonnements

4.1 Raisonnement par déduction

Principe -

- 1. Si P est vraie et l'implication $P \Longrightarrow Q$ est vraie, alors Q est vraie.
- 2. Ainsi, pour montrer que Q est vraie, il suffit de montrer que l'implication P⇒Q est vraie sous l'hypothèse que P soit vraie: c'est le raisonnement par déduction.
- 3. En pratique, un raisonnement par déduction contiendra des mots comme donc , ainsi , etc.

Remarque 12 Rédaction du raisonnement par déduction

- Au lieu de dire qu'on a montré que $P \Longrightarrow Q$ par déduction, on dit qu'on a montré l'implication directement.
- Pour démontrer directement une assertion du type P ⇒ Q, on écrit :
 On suppose qu'on a P et on montre que Q est vraie. ou
 Supposons qu'on a P et montrons qu'on a Q.

Exercice 10 Soient $x, y \in \mathbb{R}$. Montrer que : $(x+y)^2 \geqslant 4xy$.

4.2 Raisonnement par contraposition

Définition 9

- 1. $Q \Longrightarrow P$ est appelée implication réciproque de $P \Longrightarrow Q$.
- 2. $non(Q) \Longrightarrow non(P)$ est appelée **contraposée** de l'implication $P \Longrightarrow Q$.

Proposition 4

Les implications $P \Longrightarrow Q$ et (non $Q) \Longrightarrow$ (non P) sont équivalentes. Autrement dit une implication et sa contraposée sont équivalentes.

Principe -

La démonstration par contraposition de $P \Longrightarrow Q$ consiste à montrer **directement** qu'on a (non $P) \Longrightarrow (non Q)$: c'est le raisonnement par contraposition. Lors de la rédaction, on écrit : Raisonnons par contraposition. Supposons qu'on a (non Q) et montrons (non P).

Exercice 11 Soit $(a,b) \in \mathbb{R}^2$. Démontrer : $(a \neq -2 \text{ et } b \neq -2) \Longrightarrow ab + 2a + 2b \neq -4$.

4.3 Raisonnement par disjonction des cas

- Principe -

Le principe du raisonnement par **disjonction des cas** repose sur l'équivalence suivante :

$$Q \iff ((P \Longrightarrow Q)et(non(P) \Longrightarrow Q))$$
.

Ainsi, pour montrer Q, on peut distinguer deux cas : on montre d'abord que $(P\Longrightarrow Q)$, puis on montre que $(\operatorname{non}(P)\Longrightarrow Q)$. Lors de la rédaction, on écrit :

- 1er cas : Supposons qu'on a Q et vérifions qu'on a P.
- 2ème cas : Supposons maintenant qu'on a non Q, et vérifions qu'on a P.

Exercice 12 Soit $n \in \mathbb{N}$. Montrer que $\frac{n(n+1)}{2} \in \mathbb{N}$.

4.4 Raisonnement par l'absurde

- Principe

La démonstration par l'absurde s'appuie sur l'assertion vraie suivante : $((\neg P \Longrightarrow (Q \text{ et } \neg Q)) \Longrightarrow P.$

En pratique, ce raisonnement consiste, pour montrer qu'une assertion P est vraie, à montrer que **la négation de P** entraı̂ne une certaine assertion Q mais aussi sa négation.

Pour cela on suppose que P est fausse, et on recherche une assertion Q (non connue à l'avance) telle qu'on ait à la fois Q et non Q; on aboutit donc à la contradiction (Q et non Q).

Lors de la rédaction, on écrit :

Raisonnons par absurde. Supposons qu'on a (non P).

Exercice 13 Montrer que $\sqrt{2}$ est irrationnel.

4.5 Raisonnement par récurrence

Théorème 1

Soit $n_0 \in \mathbb{N}$ et $\mathbf{P}(n)$ une assertion dépendante d'un entier $n \geqslant n_0$. Si

- 1. (Initialisation) : $P(n_0)$ est vraie
- 2. (Hérédité) : $\forall n \geqslant n_0, \ (P(n) \Longrightarrow P(n+1))$ est vraie

alors: $\forall n \geq n_0$, P(n) est vraie.

Rédaction —	
reduction	

Exercice 14 Montrer que : $\forall n \in \mathbb{N}, 2^n \geqslant n$.

Théorème 2

Soient $n_0 \in \mathbb{N}$ et $\mathrm{P}(n)$ une assertion dépendante d'un entier $n \geqslant n_0$. Si

1. (Initialisation) : $P(n_0)$ et $P(n_0 + 1)$ sont vraies,

2. (Hérédité) $\forall n \ge n_0, \ ((P(n) \text{ et } P(n+1)) \Longrightarrow P(n+2) \text{ est vraie}$

alors: $\forall n \geq n_0$, P(n) est vraie.

Rédaction —
reduction

Exercice 15 Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par

$$u_0 = 4, \ u_1 = 5 \quad et \quad \forall n \in \mathbb{N}, \ u_{n+2} = 3u_{n+1} - 2u_n.$$

Montrer que pour tout $n \in \mathbb{N}$, $u_n = 2^n + 3$.

4.6 Raisonnement par analyse-synthèse

- Principe -

On raisonne par **analyse-synthèse** lorsque l'on cherche la ou les solutions à un problème. Le principe est le suivant :

- On suppose que l'on a une solution du problème et on cherche à en déduire toutes les propriétés possibles de cette solution afin de l'identifier au mieux : c'est l'étape d'analyse.
- 2. On détermine parmi tous les objets obtenus lors de l'analyse, ceux qui sont effectivement solutions du problème: c'est l'étape de synthèse.

De plus, si la phase d'analyse fournit une expression explicite de l'objet recherché, ne laissant pas le choix pour cet objet, cela fournit même l'unicité.

Exercice 16 Montrer que toute fonction $f : \mathbb{R} \to \mathbb{R}$ est la somme d'une fonction paire et d'une fonction impaire.