

Chapitre 2: Fonctions d'une variable réelle : Étude Globale

1 Généralités

1.1 Ensemble de définition

Définition 1

Si A est une partie de \mathbb{R} , alors $f:A\longrightarrow\mathbb{R}$ est dite **application** ou **fonction** si elle associe à chaque élement de A un unique élément de \mathbb{R} .

On appelle domaine de définition de f, et on note D_f , l'ensemble de points $x \in \mathbb{R}$ tels que f(x) existe dans \mathbb{R} .

Exemples 1 L'ensemble de définition de $x \mapsto \sqrt{x}$ est \mathbb{R}^+ .

Exemples 2 Déterminer le domaine de définition de $f: x \longmapsto \sqrt{\frac{x+1}{x-3}}$.

1.2 Opération sur les fonctions

Définition 2

Soient f et g deux fonctions définies sur une partie A de \mathbb{R} .

• On appelle somme des fonctions f et g, la fonction f + g définie par:

$$(f+g)(x) = f(x) + g(x)$$
, pour tout $x \in A$

• On appelle **produit des fonctions** f et g, la fonction fg définie par:

$$(fg)(x) = f(x)g(x)$$
, pour tout $x \in A$

• On suppose que : $\forall x \in A, g(x) \neq 0$. On appelle **quotient des fonctions** f et g, la fonction $\frac{f}{g}$ définie par:

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
, pour tout $x \in A$

Définition 3

Soient $f:A\longrightarrow \mathbb{R}$ et $g:B\longrightarrow \mathbb{R}$ deux fonctions telles que $f(A)\subset B$. On appelle **composée** de la fonction f par la fonction g, la fonction $g\circ f$ définie par :

$$(g \circ f)(x) = g(f(x)), \text{ pour tout } x \in A$$

LM6E 1TSI1 1

Exercice 1 Détermier $D_{\frac{f}{q}}$ et $D_{g \circ f}$.

1.3 Parité

Définition 4

Soit f une fonction dont l'ensemble de définition est symétrique par rapport à 0, c'est-à-dire :

$$-x \in D_f$$
, pour tout $x \in D_f$

• On dit que la fonction f est **paire** si :

$$f(-x) = f(x)$$
, pour tout $x \in D_f$

 \bullet On dit que la fonction f est **impaire** si

$$f(-x) = -f(x)$$
, pour tout $x \in D_f$

Exemples 3 • Les fonctions cos et $x \mapsto x^2$ sont paires.

- Les fonctions sin, tan et $x \mapsto x^3$ sont impaires.
- La fonction exp n'est paire ni impaire.

Définition 5

On appelle **représentation graphique** d'une fonction f l'ensemble des points du plan de coordonnées (x, f(x)) pour tout $x \in D_f$. On le note souvent par C_f .

Remarque 1 • La courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées.

• La courbe représentative d'une fonction impaire est symétrique par rapport à O.

1.4 Périodicité

Définition 6

Soient f une fonction et T un réel strictement positif.

• On dit que f est périodique de période T, ou plus simplement T-périodique si :

$$\forall x \in \mathcal{D}_f, x + T \in \mathcal{D}_f \text{ et } f(x + T) = f(x)$$

• On dit que f est **périodique** s'il existe T > 0 telle qu'elle soit T-périodique.

Exemples 4 • Les fonctions cos et sin sont 2π -périodiques.

• La fonction tan est π -périodique.

Proposition 1

Si $f: D_f \to \mathbb{R}$ est T-périodique alors

$$\forall k \in \mathbb{Z}, \forall x \in D_f, f(x+kT) = f(x).$$

Remarque 2 • Pour tracer la représentation graphique d'une fonction T-périodique, il suffit de tracer la courbe sur un intervalle de longueur T puis de translater autant de fois que nécessaire.

Autrement dit, une fonction T-périodique est complétement déterminée par son image sur un intervalle de longueur T.

Exemples 5 Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction 2-periodique tel que

$$\forall x \in [0,1], f(x) = x \text{ et } \forall x \in [1,2], f(x) = -x + 2.$$

Tracer la courbe de f sur [-2,4].

1.5 Restriction du domaine d'étude

Pour réduire le domaine d'étude d'une fonction $f: \mathbb{R} \to \mathbb{R}$ on suit les étapes suivantes.

- Si f est paire ou impaire, on n'étudie f que sur \mathbb{R}^+ . Le comportement de f sur \mathbb{R}_- est obtenu par symétrie.
- Si f est périodique de période T, on n'étudie f que sur un intervalle de longueur T, habituellement [0,T] ou $\left[-\frac{T}{2},\frac{T}{2}\right]$. C'est souvent le cas si f fait intervenir des fonctions trigonométriques. On obtient le comportement de f sur \mathbb{R} par périodicité.
- Si f est paire ou impaire et périodique de période T, on étudie f sur l'intervalle $\left[0, \frac{T}{2}\right]$. Par parité, on obtient le comportement de f sur $\left[-\frac{T}{2}, 0\right]$. Comme cet intervalle est de longueur T, on en déduit le comportement de f sur \mathbb{R} par périodicité.

1.6 Monotonie

Définition 7

Soit f une fonction définie sur un intervalle I de \mathbb{R} . On dit que :

- f est **croissante** sur I si
- f est **décroissante** sur I si
- f est strictement croissante sur I si
- f est strictement décroissante sur I si
- \bullet f est monotone sur I si elle y est croissante ou décroissante.
- \bullet f est strictement monotone sur I si elle y est strictement croissante ou décroissante.

Exemples 6 • La fonction $x \mapsto x^3$ est strictement croissante sur \mathbb{R} .

- La somme de deux fonctions croissantes est croissante. En effet :
- La somme de deux fonctions décroissantes est décroissante.
- ullet La composée de deux fonctions monotones de même sens de variation est croissante. En effet :
- La composée de deux fonctions monotones de sens de variation opposés est décroissante. En effet :
- $Si\ a > 0$ et f est monotone, alors af l'est aussi de même sens que celui de f.

1.7 Fonctions majorées, minorées, bornées

Définition 8

Soient f une fonction définie sur une partie A de \mathbb{R} . On dit que :

- f est **majorée** sur A si :
- f est **minorée** sur A si :
- f est bornée sur A si elle est à la fois majorée et minorée sur A, c'est-à-dire si:

ou encore si:

Exemples 7 1. Les fonctions cos et sin sont bornées sur \mathbb{R} .

- 2. La fonction exp est minorée mais n'est pas majorée.
- 3. La fonction ln n'est ni majorée ni minorée.

1.8 Extremums

Définition 9

Soit $f: D_f \to \mathbb{R}$ et $a \in D_f$. On dit que:

- f admet un **maximum en** a si :
- f admet un **minimum en** a si :
- f admet un **extremum en** a si :
- $\bullet \ f$ admet un $\mathbf{maximum}$ si :
- \bullet f admet un **extremum** si :

1.9 Branches infinies

- On considère un intervalle I et une fonction $f:I\longrightarrow \mathbb{R}.$
- On considère un élément a tel que : $a \in \mathbb{R} \cup \{+\infty, -\infty\}$.
- On considère un élément ℓ tel que : $\ell \in \mathbb{R} \cup \{+\infty, -\infty\}$.

Définition 10

On dit que f possède une branche infinie en a si $\lim_{x\to a} f(x) = \ell$ et si l'un au moins des deux éléments a ou ℓ est égal à $+\infty$ ou $-\infty$.

- Cas 1 : $a = \pm \infty$, $\ell \in \mathbb{R}$ La branche infinie est une **asymptote horizontale**, d'équation $y = \ell$.
- Cas 2 : $a \in \mathbb{R}$, $\ell = \pm \infty$ La branche infinie est une **asymptote verticale** d'équation x = a.
- Cas $3: a = \pm \infty, \ \ell = \pm \infty$ Dans ce cas, pour connaître la nature de la branche infinie au voisinage de a, on calcule $\lim_{x \to a} \frac{f(x)}{x}$.

- Si $\lim_{x\to a} \frac{f(x)}{x} = 0$, la branche infinie est une **branche parabolique horizontale**, au voisinage de
- Si $\lim_{x\to a} \frac{f(x)}{x} = \pm \infty$, la branche infinie est une **branche parabolique verticale**.
- $\text{ Si } \lim_{x \to a} \frac{f(x)}{x} = \alpha \text{, avec } \alpha \in \mathbb{R}^* \text{, on calcule } \lim_{x \to a} (f(x) \alpha x).$
 - * Si $\lim_{x\to a} (f(x) \alpha x) = \pm \infty$, la branche infinie est une **branche parabolique oblique** suivant la droite d'équation $y = \alpha x$.

* Si $\lim_{x\to a} (f(x) - \alpha x) = \beta$, avec $\beta \in \mathbb{R}$, la branche infinie est une **asymptote oblique** d'équation $y = \alpha x + \beta$, au vosinage de a.

Remarque 3 Si $a = \pm \infty$ et $a, b \in \mathbb{R}$ tels que $\lim_{x \to a} f(x) = ax + b$, alors on peut conclure directement que f admet une asymptote oblique d'équation y = ax + b, au voisinage de a.

1.10 Bijectivité

Définition 11

Soit $f: E \to F$ une application. On dit que f est **bijective** si pour tout $y \in F$, l'équation d'inconnue x, y = f(x) admet une unique solution sur E.

Autrement dit,
$$\forall y \in F$$
, $\exists ! x \in E$, $y = f(x)$.

On dit aussi que f est une **bijection** de E sur F.

Dans ce cas, on définit **l'application réciproque** de f comme l'application notée f^{-1} , définie sur F à valeurs dans E, qui à tout élément g de g associe l'unique g et g tel que g et g tel que g et g tel que g et g e

Exercice 2 Montrer que $f: x \longmapsto 2x+1$ est une bijection de \mathbb{R} sur \mathbb{R} et déterminer f^{-1} .

Exercice 3 Montrer que $g: x \mapsto x^2 + 1$ est une bijection de \mathbb{R}_+ sur $[1, +\infty[$ et déterminer g^{-1} .

Théorème 1: Théorème de la bijection strictement monotone

Soit I un intervalle et $f: I \to \mathbb{R}$ une fonction.

Si f est continue et strictement monotone, alors elle réalise une bijection de I sur l'intervalle J = f(I).

Exemples 8 Montrer que $f: x \longmapsto x^3 + x + 1$ est une bijection de \mathbb{R} sur intervalle à déterminer.

Proposition 2

Soit $f: E \longleftarrow F$ une application.

Si f est une bijection, alors il existe $g:F\longrightarrow E$ une application telle que :

- $\forall x \in E, g \circ f(x) = x$.
- $\forall y \in F, f \circ q(y) = y$.

Remarque 4 Si f est une fonction bijective, alors les courbes représentatives de f et de f^{-1} sont symétriques par rapport au premier bissectrice.

Théorème 2: Théorème de continuité de la fonction réciproque

Soient I et J deux intervalles et $f: I \to J$ une application bijective de I sur J (on a donc J = f(I)). Si f est continue sur I, alors f^{-1} est continue sur J = f(I).

Exercice 4 • Montrer $f: x \longmapsto x^2$ réalise une bijection de \mathbb{R}_+ sur \mathbb{R}_+ . Sa fonction réciproque est la fonction racine carrée $f^{-1}: x \longmapsto \sqrt{x}$.

- Montrer que f^{-1} est continue sur \mathbb{R}_+ .
- Montrer que f^{-1} est dérivable sur \mathbb{R}_+^* , puis calculer sa dérivée.

2 Dérivation d'une fonction

Définition 12: Nombre dérivé

Une fonction f définie sur un intervalle ouvert I est dite **dérivable** en $a \in I$ si sa courbe représentative admet une tangente non verticale au point (a, f(a)); le coefficient directeur de cette tangente est appelé **nombre dérivé** de f en a et est noté f'(a).

Propriétés 1

Soit f une fonction définie sur un intervalle ouvert I de \mathbb{R} et dérivable en $a \in I$. Alors la courbe représentative de f admet une tangente au (a, f(a)) d'équation :

$$y = f'(a)(x - a) + f(a)$$

Exercice 5 Déterminer le point d'intersection de la tangente à la courbe de $f: x \longmapsto xe^{-x}$ au point d'abscisse 2 avec l'axe des abscisses.

Proposition 3: Variations à l'aide de la dérivée

Soit $f:I\longrightarrow \mathbb{R}$ une fonction dérivable sur I. Alors

- Si f' = 0 sur I, alors f est constante sur I.
- Si $f' \ge 0$ (resp. $f \le 0$) sur I, alors f est croissante (resp. décroissante) sur I.

• Si
$$\begin{cases} f' \geq 0 \\ \\ f' \text{ ne s'annule qu'en un nombre finie de points sur} I \end{cases}$$
 alors f **strictement croissante** sur I .

• Si
$$\begin{cases} f' \leq 0 \\ f' \text{ ne s'annule qu'en un nombre finie de points sur} I \end{cases}$$
 alors f strictement décroissante sur I .

Proposition 4

Soit $f:I\longrightarrow J$ une fonction qui admet une fonction réciproque $g:J\longrightarrow I$. Si f est dérivable en a et $f'(a)\neq 0$, alors g est dérivable en b=f(a) et

$$g'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f'(g(b)))}$$

Théorème 3: Théorème de dérivabilité de la fonction réciproque

Soit $f: I \longrightarrow J$ une fonction qui admet une fonction réciproque $g: J \longrightarrow I$. Si f est dérivable sur I et si f' ne s'annule pas sur I (c-à-d $\forall x \in I, f'(x) \neq 0$), alors f^{-1} est dérivable sur J = f(I) et :

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}.$$

Corollaire 1

Sous les mêmes hypothèses que le théorème de dérivabilité de la fonction réciproque, si f est strictement montone sur I, alors f^{-1} l'est aussi sur J = f(I) et de même sens que celui de f.

Remarque 5 Les variations des fonctions à l'aide de la dérivée est largement utilisé pour montrer des inégalités.

3 Fonctions usuelles : Partie I

3.1 Logarithme népérien

Définition 13

La fonction logarithme népérien, notée ln, est l'unique primitive sur \mathbb{R}_+^* de $x \longmapsto \frac{1}{x}$ qui s'annule en 1.

Proposition 5

- $\forall x, y > 0$, $\ln(xy) = \ln(x) + \ln(y)$.
- $\forall x > 0$, $\ln\left(\frac{1}{x}\right) = -\ln(x)$.
- $\forall x, y > 0$, $\ln\left(\frac{x}{y}\right) = \ln(x) \ln(y)$.
- $\forall x > 0, \forall n \in \mathbb{N}, \ln(x^n) = n \ln(x).$

Proposition 6: (Limites du logarithme népérien)

- $\lim_{x \to +\infty} \ln(x) = +\infty$.
- $\bullet \lim_{x \to 0^+} \ln(x) = -\infty.$
- $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0.$
- $\bullet \ \lim_{x \to 0^+} x \ln(x) = 0.$
- $\bullet \ \lim_{x\to 1}\frac{\ln(x)}{x-1}=1.$

Exercice 6 Montrer que la fonction ln réalise une bijection de $I =]0, +\infty[$ sur un intervalle J à déterminer.

Proposition 7

L'équation $\ln(x)=1$ admet une unique solution sur $]0,+\infty[$. On note cette solution par e et c'est appelé le **nombre de Néper**.

Courbe représentative de \ln

3.2 La fonction exponentielle

Définition 14

La fonction ln réalise une bijection de \mathbb{R}_+^* sur \mathbb{R} . Sa fonction réciproque est appelée fonction **exponentielle** et notée exp. Pour tout $x \in \mathbb{R}$, $\exp(x)$ se note aussi e^x .

Remarque 6 • $\exp(0) = 1$.

• exp est strictement croissante sur \mathbb{R}

Théorème 4

La fonction exp est dérivable (donc continue) sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ \exp'(x) = \exp(x).$$

Exercice 7 Montrer que $\exp(x) \ge x + 1$, pour tout $x \in \mathbb{R}$.

Proposition 8

- $\forall x, y \in \mathbb{R}, e^{x+y} = e^x e^y$.
- $\bullet \ \forall x \in \mathbb{R}, ; e^{-x} = \frac{1}{e^x}.$
- $\bullet \ \forall x, y \in \mathbb{R}, ; e^{x-y} = \frac{e^x}{e^y}$
- $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}, e^{nx} = (e^x)^n$

Proposition 9: (Limites de la fonction exponentielle)

- $\bullet \ \lim_{x \to -\infty} e^x = 0.$
- $\bullet \lim_{x \to +\infty} e^x = +\infty.$
- $\bullet \lim_{x \to +\infty} \frac{e^x}{x} = +\infty.$
- $\bullet \lim_{x \to -\infty} x e^x = 0.$
- $\bullet \lim_{x \to 0} \frac{e^x 1}{x} = 1.$

Courbe représentative de exp

3.3 Fonctions puissances

Définition 15: (Puissances entières)

- Si $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on pose $x^n = \underbrace{x \times x \times \cdots \times x}_{n \text{ fois}}$.
- Si $x \in \mathbb{R}^*$ et $n \in \mathbb{Z}_{-}^*$, on pose $x^n = \frac{1}{x^{-n}}$.
- Si $x \in \mathbb{R}^*$, on convient que $x^0 = 1$.

Définition 16: (Puissances quelconques)

Si $x \in \mathbb{R}_+^*$ et $\alpha \in \mathbb{R}$, on pose $x^{\alpha} = \exp(\alpha \ln x)$.

ATTENTION! Si x est négatif, on ne définit pas de puissances non entières de x.

Remarque 7 Les deux définitions des puissances coïncident. Autrement dit, si $x \in \mathbb{R}_+^*$ et $n \in \mathbb{N}$:

Exemples 9 Pour tout $x \in \mathbb{R}$, on a $e^x = \exp(x \ln e) = \exp(x)$. Ce qui justifie la notation e^x pour désigner $\exp(x)$ l'exponentielle d'un réel x.

Proposition 10

Soient $x, y \in \mathbb{R}_+^*$ et $\alpha, \beta \in \mathbb{R}$.

- $\ln(x^{\alpha}) = \alpha \ln x$.
- $\bullet \ x^{\alpha+\beta} = x^{\alpha}x^{\beta}.$
- $x^{\alpha\beta} = (x^{\alpha})^{\beta}$.

- $\bullet (xy)^{\alpha} = x^{\alpha}y^{\alpha}$
- $x^{-\alpha} = \frac{1}{x^{\alpha}} = \left(\frac{1}{x}\right)^{\alpha}$.

Définition 17: (Fonction puissance)

On appelle fonction puissance toute fonction du type $x \mapsto x^{\alpha}$ où $\alpha \in \mathbb{R}$.

Proposition 11

- Si $\alpha \in \mathbb{N}^*$, $x \longmapsto x^{\alpha}$ est définie sur \mathbb{R} .
- Si $\alpha \in \mathbb{Z}_-$, $x \longmapsto x^{\alpha}$ est définie sur \mathbb{R}^* .
- Si $\alpha \in \mathbb{R} \setminus \mathbb{Z}$, $x \longmapsto x^{\alpha}$ est définie sur \mathbb{R}_{+}^{*} .

Proposition 12

- Si $\alpha \in \mathbb{N} \setminus \{0,1\}$, $x \longmapsto x^{\alpha}$ est dérivable sur \mathbb{R} de dérivée $x \longmapsto \alpha x^{\alpha-1}$.
- Si $\alpha \in \mathbb{Z}_-$, $x \longmapsto x^{\alpha}$ est dérivable sur \mathbb{R}^* de dérivée $x \longmapsto \alpha x^{\alpha-1}$.
- Si $\alpha \in \mathbb{R} \setminus \mathbb{Z}$, $x \longmapsto x^{\alpha}$ est dérivable sur \mathbb{R}_{+}^{*} de dérivée $x \longmapsto \alpha x^{\alpha-1}$.

Graphe de $x \longmapsto x^{\alpha}$ suivant les valeurs de α

3.4 Fonctions racines

Définition 18

• Si n est un entier naturel pair, la fonction $x \mapsto x^n$ réalise une bijection de \mathbb{R}^+ sur \mathbb{R}^+ . Sa bijection réciproque est encore appelée la **fonction racine n-ième** et notée $x \mapsto \sqrt[n]{x}$.

Proposition 13

- Si n est un entier naturel impair, la fonction $x \longmapsto \sqrt[n]{x}$ définie sur \mathbb{R} .
- Si n est un entier naturel pair, la fonction $x \longmapsto \sqrt[n]{x}$ définie sur \mathbb{R}_+ .
- Pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}^*$: ; $\sqrt[n]{x} = x^{\frac{1}{n}}$.

3.5 Croissances comparées des fonctions logarithme, puissances et exponentielle

Proposition 14

Soit $\alpha, \beta, \gamma \in \mathbb{R}$.

- Si $\alpha \neq 0$ alors $\lim_{x \to +\infty} e^{\alpha x} x^{\beta} \ln^{\gamma} x = \lim_{x \to +\infty} e^{\alpha x}$.
- Si $\beta \neq 0$ alors $\lim_{x \to +\infty} x^{\beta} \ln^{\gamma} x = \lim_{x \to +\infty} x^{\beta}$ et $\lim_{x \to 0^{+}} x^{\beta} |\ln x|^{\gamma} = \lim_{x \to 0^{+}} x^{\beta}$.