

Chapitre 5 : Calcul Algébrique

1 Notation Σ et Π

Définition 1

Soient $a_p, a_{p+1}, \ldots, a_n \in \mathbb{C}$ avec $p \leq n$. On pose :

$$\sum_{i=p}^{n} a_i = a_p + a_{p+1} + \dots + a_n$$

Plus généralement si $(a_i)_{i\in I}$ est une famille finie de nombres complexes (i.e. I est fini), on pose :

 $\sum_{i \in I} a_i = \text{ somme de tous les nombres de la famille } (a_i)_{i \in I}.$

Lorsque $I=\varnothing,$ on pose par convention $\sum_{i\in\emptyset}a_i=0.$

Remarque 1 (1) L'indice i est muet, c'est-à-dire qu'on peut le remplacer par n'importe quel autre symbole non utilisé ailleurs :

$$\sum_{i=p}^{n} a_i = \sum_{k=p}^{n} a_k = \sum_{\alpha=p}^{n} a_\alpha = \cdots$$

- (2) Le nombre de termes de la somme $\sum_{k=p}^{n} a_k$ est n-p+1.
- (3) De la même manière, on pose :

$$\prod_{i=p}^{n} a_i = a_p \times a_{p+1} \times \dots \times a_n.$$

Exercice 1 Soit $\alpha \in \mathbb{C}$. Calculer $\sum_{k=p}^{n} \alpha$.

2 Sommes usuelles

Proposition 1

Soit $n \in \mathbb{N}^*$. On a :

(i)
$$1+2+\cdots+n=\sum_{k=1}^{n}k=\frac{n(n+1)}{2}$$
.

(ii)
$$1^2 + 2^2 + \dots + n^2 = \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$
.

(iii)
$$1^3 + 2^3 + \dots + n^3 = \sum_{k=1}^n k^3 = \left[\frac{n(n+1)}{2}\right]^2$$
.

Preuve. 1 Par récurrence sur n.

Proposition 2: (Somme géométrique)

Soient $q \in \mathbb{C}$ et $n \in \mathbb{N}$. On a

$$1 + q + q^{2} + \dots + q^{n} = \sum_{k=0}^{n} q^{k} = \begin{cases} \frac{1 - q^{n+1}}{1 - q} & \text{si } q \neq 1\\ n + 1 & \text{si } q = 1 \end{cases}$$

Plus généralement, si p et n sont deux entiers tels que $0 \le p \le n$, alors :

$$q^{p} + q^{p+1} + \dots + q^{n} = \sum_{k=p}^{n} q^{k} = \begin{cases} q^{p} \frac{1 - q^{n-p+1}}{1 - q} & \text{si } q \neq 1\\ n - p + 1 & \text{si } q = 1 \end{cases}$$

Exercice 2 Soient $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$. Calculer $\sum_{k=0}^{n} e^{ik\theta}$ et en déduire $\sum_{k=0}^{n} \cos(k\theta)$ et $\sum_{k=0}^{n} \sin(k\theta)$.

3 Propriétés

Proposition 3

Soient a_p, \ldots, a_n et b_p, \ldots, b_n et λ des nombres réels ou complexes.

(1) La linéarité de la somme :

$$\sum_{k=p}^{n} (a_k + b_k) = \sum_{k=p}^{n} a_k + \sum_{k=p}^{n} b_k \text{ et } \sum_{k=p}^{n} \lambda a_k = \lambda \sum_{k=p}^{n} a_k.$$

(2) Relation de Chasles : si $p \le m < n$, alors

$$\sum_{k=p}^{n} a_k = \sum_{k=p}^{m} a_k + \sum_{k=m+1}^{n} a_k$$

(3) Inégalités : si : $\forall k \in [m, n], a_k \leq b_k$, alors $\sum_{k=p}^n a_k \leq \sum_{k=p}^n b_k$.

(4) Inégalité triangulaire : $\left|\sum_{k=p}^{n} a_k\right| \leqslant \sum_{k=p}^{n} |a_k|$.

Exercice 3 Soit $n \in \mathbb{N}^*$. Calculer la somme $\sum_{k=1}^n k(k+2)$.

Exercice 4 Soit $n \in \mathbb{N}^*$. Calculer la somme $\sum_{k=1}^{2n} \min(k, n)$.

Changement d'indice

Exercice 5 On a

$$\sum_{k=0}^{n} a_{k+1} = a_1 + a_2 + a_3 + \dots + a_{n+1} = \sum_{\ell=1}^{n+1} a_{\ell}.$$

On dit alors qu'on a effectué le changement d'indice $\ell = k+1$. Cela revient à remplacer tous les k de la somme initiale par des $\ell-1$. Mais il faut aussi changer les bornes :

k	0	1	2	 n-1	n
ℓ	1	2	3	 n	n+1

Exercice 6 On a

$$\sum_{k=2}^{n+1} a_{k-2} = a_0 + a_1 + a_2 + \dots + a_{n-1} = \sum_{j=0}^{n-1} a_j.$$

On a alors effectué le changement d'indice j = k - 2:

k	2	3	4	 n	n+1
j	0	1	2	 n-2	n-1

Exercice 7 Soit n un entier naturel impair. En utilisant le changement d'indice $\ell=n-k$, montrer que la somme $S_n = \sum_{k=1}^{n-1} \frac{(-1)^k}{k(n-k)}$ est nulle. Posons $\ell = n-k$. On a

k	1	2	3	 n-2	n-1
ℓ					

Propriétés 1

Soient $p \leq n$ deux entiers naturels et a_p, \ldots, a_n des nombres complexes. Alors,

$$\sum_{k=p}^{n} a_k = \sum_{k=p}^{n} a_{n-k+p}$$

5 Sommes et produits télescopiques

Proposition 4

Soit $(z_k)_{m \leq k \leq n+1}$ une famille de nombres complexes.

- (i) Somme télescopique : $\sum_{k=p}^{n}(z_{k+1}-z_k)=z_{n+1}-z_p.$
- (ii) Produit télescopique : $\prod_{k=p}^{n} \frac{z_{k+1}}{z_k} = \frac{z_{n+1}}{z_p}.$

Preuve. 2

Exercice 8 Soit $n \in \mathbb{N}^*$. Calculer la somme $\sum_{k=1}^n \ln \left(1 + \frac{1}{k}\right)$.

6 Séparation des indices pairs et impairs

Proposition 5

Soit $(a_k)_{0 \leq k \leq n}$ une famille de nombres complexes.

$$\sum_{k=0}^{n} a_k = \sum_{\substack{0 \leqslant k \leqslant n \\ k \text{ pair}}} a_k + \sum_{\substack{0 \leqslant k \leqslant n \\ k \text{ impair}}} a_k = \sum_{\substack{0 \leqslant 2p \leqslant n}} a_{2p} + \sum_{\substack{0 \leqslant 2p+1 \leqslant n}} a_{2p+1}.$$

Exercice 9 Soit $n \in \mathbb{N}$. Calcular $\sum_{k=0}^{2n} (-1)^k k$.

7 Factorielle, coefficients binomiaux

Définition 2

Pour tout $n \in \mathbb{N}^*$, on pose $n! = 1 \times 2 \times \cdots \times n$. C'est **factorielle** de n. Par convention, on pose 0! = 1.

Exercice 10 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 150.

Définition 3

Soient $(n,k) \in \mathbb{N} \times \mathbb{N}$. On appelle (coefficient binomial) k parmi n, noté $\binom{n}{k}$, le nombre défini par

$$\binom{n}{k} = \begin{cases} \frac{n!}{k!(n-k)!} & \text{si } 0 \leqslant k \leqslant n \\ 0 & \text{sinon.} \end{cases}$$

Exercice 11 $\binom{n}{0} = 1$, $\binom{n}{1} = n$, $\binom{n}{2} = \frac{n(n-1)}{2}$, $\binom{n}{n} = 1$.

Proposition 6

Pour $n \in \mathbb{N}$ et $k \in \mathbb{N}$, on a

- (1) Formule de symétrie : $\binom{n}{k} = \binom{n}{n-k}$.
- (2) Formule de Pascal : $\binom{n}{k+1}+\binom{n}{k}=\binom{n+1}{k+1}$.

Remarque 2 La relation de Pascal permet de calculer par récurrence les coefficients binomiaux. C'est le triangle de Pascal

8 Formule du binôme de Newton

Théorème 1: (Formule du binôme de Newton)

Soient $(a, b) \in \mathbb{C}^2$ et $n \in \mathbb{N}$. On a :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \binom{n}{0} a^0 b^n + \binom{n}{1} a^1 b^{n-1} + \binom{n}{2} a^2 b^{n-1} + \dots + \binom{n}{n} a^n b^0.$$

Preuve. 3

Exercice 12 (1) $(a+b)^2 =$

(2)
$$(a+b)^3 =$$

(3)
$$(a+b)^4 =$$

Exercice 13 (1) $\sum_{k=0}^{n} {n \choose k} =$

(2)
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} =$$

9 Formule de Bernoulli

Proposition 7

Soient $a, b \in \mathbb{C}^2$ et $n \in \mathbb{N}$. On a la formule de Bernoulli :

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{n-1-k} b^{k}.$$

c'est-à-dire

$$a^{n} - b^{n} = (a - b) (a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}),$$

Exercice 14 (1) $a^2 - b^2 =$

(2)
$$a^3 - b^3 =$$

(3)
$$a^3 + b^3 =$$

$$(4) a^4 - b^4 =$$

10 Sommes doubles

Définition 4

On considère le tableau suivant des nombres complexes :

$$x_{11}$$
 x_{12} \dots x_{1j} \dots x_{1m}

$$x_{21}$$
 x_{22} \dots x_{2j} \dots x_{2m}

$$x_{i1}$$
 x_{i2} \dots x_{ij} \dots x_{im}

$$x_{n1}$$
 x_{n2} \dots x_{nj} \dots x_{nm}

La somme des éléments de ce tableau est appelée somme double et notée $\sum_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant m}} x_{ij}$.

Remarque 3 Si n=m, on peut écrire $\sum_{\substack{1 \leqslant i,j \leqslant n}} x_{ij}$ au lieu de $\sum_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}} x_{ij}$.

Proposition 8: (Théorème de Fubini)

$$\sum_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant m}} x_{ij} = \sum_{i=1}^n \left(\sum_{j=1}^m x_{ij} \right) = \sum_{j=1}^m \left(\sum_{i=1}^n x_{ij} \right).$$

Preuve. 4

Exercice 15 Calculer la somme double : $\sum_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant \ell \leqslant m}} (k+\ell)$.

Corollaire 1

Soient x_1, x_2, \dots, x_n et y_1, y_2, \dots, y_m des nombres complexes. On a

(1)
$$\left(\sum_{i=1}^{n} x_i\right) \left(\sum_{j=1}^{m} y_j\right) = \sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} x_i y_j.$$
(2)
$$\left(\sum_{i=1}^{n} x_i\right)^2 = \sum_{1 \le i, j \le n} x_i x_j.$$

$$(2) \left(\sum_{i=1}^{n} x_i\right)^2 = \sum_{1 \leqslant i, j \leqslant n} x_i x_j$$

Exercice 16 Calculer la somme double : $\sum_{\substack{0 \leqslant i \leqslant n \\ 0 \leqslant j \leqslant m}} 2^{i+j}$.

11 Sommes triangulaires

Définition 5

On considère le tableau suivant des nombres complexes :

$$x_{11}$$
 x_{12} \dots x_{1j} \dots x_{1n}

$$x_{22} \quad \dots \quad x_{2j} \quad \dots \quad x_{2n}$$

$$x_{ij}$$
 ... x_{in}

 x_{nn}

La somme des éléments de ce tableau est appelée somme triangulaire et notée $\sum_{1 \leq i \leq j \leq n} x_{ij}$.

Proposition 9

$$\sum_{1\leqslant i\leqslant j\leqslant n} x_{ij} = \sum_{i=1}^n \left(\sum_{j=i}^n x_{ij}\right) = \sum_{j=1}^n \left(\sum_{i=1}^j x_{ij}\right).$$

On a aussi :

$$\sum_{1 \leqslant i < j \leqslant n} x_{ij} = \sum_{i=1}^{n-1} \left(\sum_{j=i+1}^{n} x_{ij} \right) = \sum_{j=2}^{n} \left(\sum_{i=1}^{j-1} x_{ij} \right).$$

Exercice 17 Soit $n \in \mathbb{N}^*$. Calculer la somme triangulaire : $\sum_{1 \leqslant k \leqslant \ell \leqslant n} k\ell$.

Exercice 18 Soit $n \in \mathbb{N}^*$. Calculer la somme triangulaire : $\sum_{1 \leqslant k \leqslant \ell \leqslant n} \frac{k}{\ell}.$

Corollaire 2

Soient x_1, x_2, \ldots, x_n des nombres complexes.

$$\left(\sum_{i=1}^{n} x_i\right)^2 = \sum_{1 \le i, j \le n} x_i x_j = \sum_{i=1}^{n} x_i^2 + 2 \sum_{1 \le i < j \le n} x_i x_j.$$

Preuve. 5

Exercice 19 Développer $(a+b+c)^2$.