

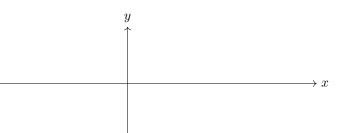
# Chapitre 4 : Fonctions usuelles Partie II

# 1 Fonctions circulaires réciproques

#### 1.1 Fonction arc sinus

- Rappels -

- 1. La fonction sin est impaire et continue sur  $\mathbb{R}$ .
- $2. \lim_{x \to 0} \frac{\sin x}{x} = 1.$
- 3. La fonction sin est dérivable sur  $\mathbb{R}$  et on a  $\sin' = \cos$ .
- 4. Graphe de la fonction sin:



#### Proposition 1

La fonction sin réalise une bijection de  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$  vers [-1, 1]. Sa réciproque s'appelle la fonction **arc** sinus et se note **arcsin**.

**Remar 1** (1)  $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \forall y \in [-1, 1], \sin(x) = y \iff x = \arcsin(y).$ 

- (2)  $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \arcsin(\sin x) = x.$
- (3)  $\forall y \in [-1, 1], \sin(\arcsin y) = y.$

**Exercice 1** Calculer  $\arcsin(0)$ ,  $\arcsin(1)$ ,  $\arcsin(1/2)$ ,  $\arcsin(\sin\frac{\pi}{4})$  et  $\arcsin(\sin\frac{5\pi}{3})$ .

#### Théorème 1

- (1) La fonction arcsin est impaire.
- (2) La fonction arcsin est continue sur [-1,1], mais elle n'est dérivable que sur ]-1,1[ et on a :

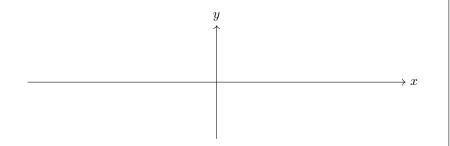
$$\forall x \in ]-1,1[, \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}.$$



#### 1.2 Fonction arc cosinus

- Rappels —

- 1. La fonction cos est paire et continue sur  $\mathbb{R}$ .
- $2. \lim_{x \to 0} \frac{1 \cos x}{x^2} = \frac{1}{2}.$
- 3. La fonction cos est dérivable sur  $\mathbb{R}$  et on a  $\cos' = -\sin$ .
- 4. Graphe de la fonction cos:



# Proposition 2

La fonction cos réalise une bijection de  $[0,\pi]$  vers [-1,1]. Sa réciproque s'appelle la fonction **arc** cosinus et se note arccos.

**Remar 2** (1)  $\forall x \in [0, \pi], \forall y \in [-1, 1], \cos(x) = y \iff x = \arccos(y).$ 

- (2)  $\forall x \in [0, \pi], \arccos(\cos x) = x.$
- (3)  $\forall y \in [-1, 1], \cos(\arccos y) = y.$
- (4) La fonction arccos n'est paire ni impaire.

**Exercice 2** Calculer  $\arccos(0)$ ,  $\arccos(1)$ ,  $\arccos(\sqrt{3}/2)$ ,  $\arccos(\cos\frac{\pi}{3})$  et  $\arccos(\cos\frac{5\pi}{3})$ .

#### Théorème 2

La fonction arccos est continue sur [-1,1], mais elle n'est dérivable que sur ]-1,1[ et on a :

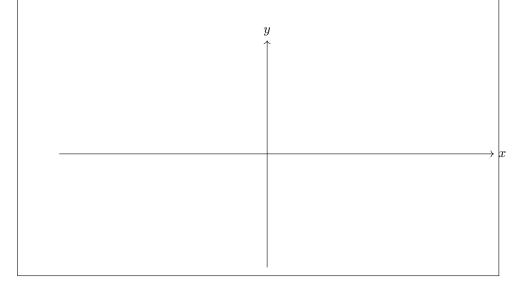
$$\forall x \in ]-1,1[, \arccos'(x) = -\frac{1}{\sqrt{1-x^2}}.$$



## 1.3 Fonction arc tangente

#### Rappels -

- 1. La fonction tan est impaire et elle est définie et continue sur  $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + n\pi : n \in \mathbb{Z} \right\}$ .
- $2. \lim_{x\to 0} \frac{\tan x}{x} = 1, \lim_{x\to \left(-\frac{\pi}{2}\right)^+} \tan x = -\infty \text{ et } \lim_{x\to \left(\frac{\pi}{2}\right)^-} \tan x = +\infty.$
- 3. La fonction tan est dérivable sur  $\mathbb{R}\setminus\left\{\frac{\pi}{2}+n\pi:n\in\mathbb{Z}\right\}$  et on a :  $\tan'=\frac{1}{\cos^2}=1+\tan^2$ .
- 4. Graphe de la fonction tan :



#### Proposition 3

La fonction tan réalise une bijection de  $]-\frac{\pi}{2},\frac{\pi}{2}[$  vers  $\mathbb{R}$ . Sa réciproque s'appelle la fonction **arc** tangente et se note arctan.

**Remar 3** (1)  $\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \forall y \in \mathbb{R}, \tan x = y \Longleftrightarrow x = \arctan y.$ 

- (2)  $\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \arctan(\tan x) = x.$
- (3)  $\forall y \in \mathbb{R}, \tan(\arctan y) = y.$

**Exercice 3** Calculer  $\arctan(0)$ ,  $\arctan(1)$ ,  $\arctan(\sqrt{3})$ ,  $\arctan(\tan\frac{\pi}{5})$  et  $\arctan(\tan\frac{5\pi}{3})$ .



#### Théorème 3

- (1) La fonction arctan est impaire.
- (2)  $\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$  et  $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$ .
- (3) La fonction arctan est dérivable (donc continue) sur  $\mathbb{R}$  et on a :

$$\forall x \in \mathbb{R}, \ \arctan'(x) = \frac{1}{1+x^2}.$$

# 2 Fonctions hyperboliques

# 2.1 Fonctions sinus et cosinus hyperboliques

#### Définition 1

Les fonctions sinus hyperbolique (notée sh ou sinh) et cosinus hyperbolique (notée ch ou cosh) sont définies sur  $\mathbb{R}$  par :

$$sinh x = \frac{e^x - e^{-x}}{2} \text{ et } \cosh x = \frac{e^x + e^{-x}}{2}.$$

#### Proposition 4

- (1) La fonction sinh est impaire.
- (2) La fonction cosh paire.
- (3) Les fonctions sinh et cosh sont dérivables sur  $\mathbb{R}$  avec :  $\sinh' = \cosh' = \sinh$ .

#### Proposition 5

Pour tout réel x on a :  $\cosh x + \sinh x = e^x$ ,  $\cosh x - \sinh x = e^{-x}$  et  $\cosh^2 x - \sinh^2 x = 1$ .

#### 2.2 La fonction tangente hyperbolique

#### Définition 2

La fonction tangente hyperbolique, notée th ou tanh est définie sur  $\mathbb{R}$  par

$$\tanh x = \frac{\sinh x}{\cosh x}.$$

**Remar 4** On a  $\forall x \in \mathbb{R}$ ,  $\cosh x > 0$ , ce qui prouve que cette fonction est bien définie sur  $\mathbb{R}$ .



#### Proposition 6

La fonction tanh est impaire et elle est dérivable sur  $\mathbb R$  avec :

$$\forall x \in \mathbb{R}, \ \tanh'(x) = \frac{1}{\cosh^2 x} = 1 - \tanh^2 x.$$

# 3 Fonctions hyperboliques réciproques

### 3.1 Fonction arc sinus hyperbolique

#### Proposition 7

La fonction sinh réalise une bijection de  $\mathbb{R}$  vers  $\mathbb{R}$ . Sa réciproque s'appelle la fonction **arc sinus** hyperbolique et se note **arcsinh**.

**Remar 5** (1)  $\forall x, y \in \mathbb{R}$ ,  $\sinh x = y \iff x = \operatorname{arcsinh} y$ .

(2)  $\forall x \in \mathbb{R}$ ,  $\operatorname{arcsinh}(\sinh x) = \sinh(\operatorname{arcsinh} x) = x$ .

#### **Proposition 8**

- (1) arcsinh est impaire.
- (2) La fonction arcsinh est dérivable (donc continue) sur  $\mathbb{R}$  et on a:

$$\forall x \in \mathbb{R}, \ \operatorname{arcsinh}'(x) = \frac{1}{\sqrt{x^2 + 1}}.$$

# 3.2 Fonction arc cosinus hyperbolique

#### Proposition 9

La fonction cosh réalise une bijection de  $[0, +\infty[$  vers  $[1, +\infty[$ . Sa réciproque s'appelle la fonction **arc cosinus hyperbolique** et se note **arccosh**.

5



**Remar 6** (1)  $\forall x \in [0, +\infty[, \forall y \in [1, +\infty[, \cosh x = y \iff x = \operatorname{arccosh} y]$ .

- (2)  $\forall x \in [0, +\infty[, \operatorname{arccosh}(\cosh x) = x.]$
- (3)  $\forall x \in [1, +\infty[, \cosh(\operatorname{arccosh} x) = x.$

#### Proposition 10

La fonction arccosh est continue sur  $[1, +\infty[$ , mais elle n'est dérivable que sur  $]1, +\infty[$  avec :

$$\forall x \in ]1, +\infty[, \operatorname{arccosh}'(x) = \frac{1}{\sqrt{x^2 - 1}}.$$

## 3.3 Fonction arc tangente hyperbolique

#### Définition 3

La fonction tanh réalise une bijection de  $\mathbb{R}$  vers ] -1,1[. Sa réciproque s'appelle la fonction **arc** tangente hyperbolique et se note arctanh.

 $\mathbf{Remar} \ \mathbf{7} \quad (1) \ \forall x \in \mathbb{R}, \forall y \in ]-1,1[, \ \tanh x = y \Longleftrightarrow x = \operatorname{arctanh} y.$ 

- (2)  $\forall x \in \mathbb{R}$ ,  $\operatorname{arctanh}(\tanh x) = x$ .
- (3)  $\forall x \in ]-1,1[, \tanh(\operatorname{arctanh} x) = x.$

#### **Proposition 11**

- (1) arctanh est impaire.
- (2) La fonction arctanh est dérivable (donc continue) sur ]-1,1[ et on a

$$\forall x \in ]-1,1[, \operatorname{arctanh}'(x) = \frac{1}{1-x^2}.$$